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Abstract 

Learning a category requires detecting the features that distinguish the members from the non-

members. After a category has been successfully learned, we sometimes observe a phenomenon 

referred to as learned Categorical Perception (CP), in which members of different categories are 

perceived as more different (between-category separation) and members of the same category 

come to be perceived as more similar (within-category compression). This present study aimed 

to test whether it is possible to induce CP using sound-sequences that were generated in the lab. 

Two categories of sounds were generated (Kalaphones and Lakaphones) and were studied with a 

pairwise similarity judgment task (40 pairs) before and after a supervised categorization training 

task consisting of 400 stimuli. Subjects would begin and end our study with a similarity rating 

task which would play pairs of Kalaphones (K) or Lakaphones (L) or both, back-to-back in rapid 

succession, and subjects were asked to rate how similar or dissimilar these pairs were from each 

other. The scores they submitted would be used to evaluate their between-category separation 

and within-category compression. Once the first similarity judgment task was completed, 

subjects would start the categorization trial, where they had to identify 400 stimuli as either a K 

or L and were given corrective feedback based on whether their answer was right or wrong. We 

found that our stimuli are learnable and, 3 of the 4 the learners who met our 80% correct 

criterion in our sample show a significant CP effect. The number of correct trials in block 4 was 

significantly correlated with the size of the CP effect across all subjects, and the same trend 

(positive but not quite significant) was present when we excluded the 9 lab members from the 

sample. We also examined our stimuli and subjects’ performance for any potential bias (i.e., did 

a K or L appear in a specific section of our stimuli more often than in others, or did our subjects 

perform better when a K or L appeared in a specific chunk?). We found no position bias in our 
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stimuli and only two instances of performance bias. These pilot results will help us further 

calibrate our auditory stimuli for future studies.  

Key words: categorization, auditory categorical perception, supervised training/learning, 

chunking 
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Supervised Learning of Auditory Categories: A Pilot Study 

Categorization 

 Categorization is the action of sorting things into categories based on features that 

distinguish the categories (Harnad, 2017; Pérez-Gay et al., 2017). What determines which thing 

belongs to which category is the features that distinguish the categories. These covarying 

features are what allow us to distinguish the members from the non-members. This process is 

done by sensorimotor systems (organisms) interacting with their environment. How they interact 

with their environment depends on what their environment “affords” them in a specific context 

(Gibson, 1979). For example, a key could be used to open locks, but it would not be used as a 

frisbee or boomerang because its features do not afford such usage. Similarly, a key is a 

category, but this category contains a vast array of members: transponder keys (car keys), 

padlocks (house keys), etc. One feature that they all have in common and that is lacking by non-

keys is that they are objects that can be used to unlock keyholes. Where these objects differ is 

what kind of keyhole they can unlock (i.e., it would be impossible to use a house key to unlock a 

car, and vice-versa). Thus, to use a house key to unlock a house would be doing the right thing 

(using a key to unlock something) with the right kind of thing (using a padlock to unlock the 

house). That is the essence of categorization: doing the right thing with the right kind of thing 

(Harnad, 2017).  

 There are two dominating views in categorization: the classical and the “non-classical” 

view. The classical view is that all category members share invariant features that determine 

whether they belong to one category or another, and this distinction is absolute (Harnad, 2017) 

rather than a matter of degree (Mervis & Rosch, 1981). Some things will belong to one category 

based on the features they share (covariance), and things that do not belong to that category lack 
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those features. It is important to keep in mind that categorization and discrimination are not the 

same thing. Miller (1956) pointed out that discrimination is a relative judgment (i.e., simply 

comparing similarities and dissimilarities between two or more objects), whereas categorization 

is an absolute judgment. To categorize something is to identify something in isolation. The 

alternative/non-classical view is that categories are not absolute and determining category 

membership becomes more of a matter of degree (McCloskey & Glucksberg, 1978). The 

rationale behind this view is that the boundaries between categories are “fuzzy”, and therefore 

everything is a member of every category, and what makes some categories more similar to 

others is their degree of similarity. For this project, the classical view will be assumed.  

Category Learning 

 Categories can be learned by detecting the features that distinguish them through 

sensorimotor interaction with members and non-members. This applies to categories that are 

either innate or learned. One example of an innate category in humans would be our ability to 

perceive colour (Jacobs, 2013). However, most categories are not genetically encoded and must 

therefore be learned (Pérez-Gay et al., 2017).  

An organism can learn a category through direct sensorimotor input with two forms of 

learning: unsupervised and supervised learning. Unsupervised learning is learning a category 

through mere exposure. This type of learning involves an organism passively receiving inputs 

from its environment and learning to detect the similarities and dissimilarities of the inputs 

through the correlations among the features of the inputs it encounters. Unsupervised learning is 

known to be effective (Ell et al., 2012), but its efficiency is dependent on a lot of repetition and 

on whether the relevant features of the categories are salient enough to be detected without any 

form of assistance (e.g., the features that make up a car are very different from the ones that 
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make up a bike, even if both can be categorized as a means of transportation). On the other hand, 

supervised learning is when you learn a category through trial-and-error and receive corrective 

feedback based on whether your answer was right or wrong. This type of learning will enable the 

organism to learn categories that are more complex and nuanced (categories in which only small 

features distinguish them). This is because the corrective feedback given to the organism helps 

the brain detect the relevant features of a category more efficiently than through mere exposure 

(LeCun et al., 2015). An example of this would be trying to identify and distinguish the various 

species of bees inhabiting the globe. Many of them look alike and have very similar features 

(they are pollination-based flies that sport similar colours). To learn the difference between a 

honeybee and a killer-bee, corrective feedback would be necessary, as the features that 

distinguish them are minute.  

It is important to keep in mind that context plays a role in learning as well. Many objects 

can be used for one purpose but can be used for a completely unrelated one if the object affords 

such usage. An example of this would be how a table is normally used to place objects on top of 

it, but if a person would want to sit on it because he/she is tired, the features of the table afford 

doing so. The feedback from the consequences of doing the right or wrong thing allow organisms 

to learn to identify which features covary with category membership and to differentiate what to 

do with the members and non-members. This makes categorization approximate rather than 

exact; as neither unsupervised nor supervised learning allow an organism to extract all possible 

features of each input/category. Rather, what happens is that once enough features have been 

detected to do the right thing with members and non-members, unless there is a change in 

context, it is unnecessary to seek out more features to detect; the ones that are being used and 

work are sufficient.  
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The third (and only indirect) type of learning is through verbal instruction. It is unique to 

humans and is defined as the ability to acquire new categories through naming and describing 

them (Blondin-Masse et al., 2013). After enough categories have been “grounded” directly – 

either learned through observation (unsupervised learning) and/or trial-and-error feedback 

(supervised learning) – humans can name them. Naming a category means assigning an arbitrary 

symbol (usually spoken or written) to it: this category-name is one that has been collectively 

agreed to by the speakers of the language. The English word “bottle” does not have any physical 

similarities to an actual bottle, nor does the Arabic word “زجاجة” resemble its English 

counterpart, yet both names (arbitrary symbols) refer to the same category.  

As previously stated, the ability to correctly categorize requires selectively abstracting a 

sufficient number of relevant features to identify the members of a category. Hence naming 

designates a category because it is “grounded” by having detected its relevant features through 

sensorimotor experience. As a result, a person can now combine and re-combine category names 

to create subject/predicate propositions to further define and/or describe categories whose 

features are a combination of pre-existing categories which have been defined/described 

exclusively through verbal propositions: “husband = married man”; “bachelor = unmarried 

man”; “wife = married woman”; “bachelorette = unmarried woman”, etc. The recombination of 

categories into propositions enables humans to learn categories (through verbal instruction) at a 

much faster rate than through direct sensorimotor interaction with them. As the verbal categories 

have already been directly “grounded” through sensorimotor experience, humans can teach each 

other categories without having to take the time to be in direct contact with them. For instance, a 

person can learn what a Zebra is without having seen one in person; all they have to know is that 

it is a horse-like creature with white and black stripes marked across its entire body. Once that 
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description has been understood by the listener, it no longer becomes necessary to physically see 

one to know what a Zebra is.  

Categorical perception  

 Categorical perception (CP) is the phenomenon that occurs when members of different 

categories look more dissimilar from one another (between-category separation) and/or members 

of the same categories look more similar (within-category compression) than one would 

otherwise expect (Harnad, 1987/2003; Goldstone & Hendrickson, 2010; Notman et al., 2005). 

Learned CP occurs in some instances (but not all) as a consequence of learning to detect the 

relevant features of two or more categories. CP is not to be confused with categorization itself or 

learning to categorize. Categorization is about the proper sorting of things (doing the right thing 

with the right kind of thing), and learned CP is a perceptual effect (occurring after category 

learning) that makes the differences between different categories more obvious (separation) and 

the similarities between members of the same category more apparent (compression).  

Though it may seem trivial to say that different categories look different from one 

another, the way we perceive categories is not strictly based on how similar they are to one 

another. If this had been the case, then an organism would be able to learn all categories through 

unsupervised learning. The capacity to do the right thing with the right kind of thing is not 

conferred only by innately detected similarities (i.e., the differences we can spot through mere 

exposure). At times, corrective feedback (supervised learning) may be the only way to learn to 

detect which features of a specific category are relevant and which features can be ignored.  

CP has been studied since the late 1950s. In its infancy, Liberman et al., 1957, noticed 

that speech phonemes segregate perceptually into qualitatively distinct categories, like colors. 
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This effect went on to be found in non-speech sounds, too (Aaltonen et al., 1997; Guenther et al., 

1999). CP has also been studied in visual stimuli such as faces and colors (Etcoff & Magee, 

1992; Sauter et al., 2011) and other visual stimuli (Andrews et al., 2015). More recently, CP has 

been found to be inducible by learning (Pérez-Gay et al., 2017).   

The present investigation  

 The present research examined whether categories of morse-code-like sound-sequences 

are learnable and whether the learning generates CP. This is a calibration study in its pilot phase. 

Our results were collected to assess whether our sound-sequences were balanced and unbiased or 

required further adjustment. We compared similarity judgments for pairs of inputs in the same 

category (20) or in different categories (20), before and after categorization training (400 trials). 

We tested whether the categories would be learnable with supervised learning and whether 

successful category learning would produce CP (decreased pairwise similarity between 

categories and/or greater similarity within). We predicted that the categories would be learnable 

and that learning would induce CP. 

 The sounds were a series of 12 bits (dees or dahs) in 3 chunks of 4 bits. One of the 3 

chunks contained the relevant feature, the other two chunks were irrelevant. The relevant feature 

could be in chunk 1, 2, or 3, and its position varied randomly across trials. We tested whether 

there was any (1) position bias (did the relevant feature appear the same number of times in 

chunk 1, 2, and 3?) (2) category bias (were there an equal number of Kalaphones and 

Lakaphones with the relevant feature in chunk 1, 2, and 3?) and (3) performance bias (did the 

subjects perform equally well when the relevant feature was in chunk 1, 2, and 3?). We predicted 

that there would be no position, category, or performance bias. 
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Methods 

Subjects and Procedure 

This study took place over the summer and included a total N of 35 subjects (46% 

Female, 54% Male); M(age) 30.8, SD = 8.17). Of the 35 subjects, 9 were active members in Dr. 

Harnad’s lab (Laboratoire de Cognition et Communication), and the rest were either relatives or 

friends of the co-authors. Subjects were recruited through text or phone calls and were not 

compensated for the study (though, their time and effort were greatly appreciated).  

This study was conducted virtually and was hosted on a website server. Before taking 

part in the study, we asked subjects to wear headphones/earphones to participate, and to give 

themselves at least 90 minutes to complete the task, as it cannot be paused. Furthermore, we 

required all subjects to use the latest version of Google Chrome, as this was the browser that 

would run our study from beginning to end with a minimum number of bugs. Measures like 

these were our best ways to ensure that we could reduce the high variability (variability being 

that everyone has different computers, internet connection/speeds, headphones, situations at 

home, etc.) that is inherent to our study, considering that it is not hosted in a controlled 

laboratory setting.  

Once the aforementioned conditions were agreed upon by our subjects, they would be 

sent a link to the website that hosted our study (taskb.audiocat.net). Before starting, we would 

debrief them about what the study consists of and what is expected of them. Some of this 

debriefing was done over the phone, and some through text. They were never given hints about 

what was the feature differentiating the two kinds of stimuli. They were told that the study would 

be divided into three sections (pairwise similarity task, followed by the categorization task, and 
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finishing with a similarity task) and that for the similarity tasks, they must differentiate between 

the two sound-sequences that will be played back-to-back, and for the categorization trials they 

will have to select whether a sound-sequence belonged to one category or the other. Once our 

subjects were ready to participate, they were asked some questions (on the first page of the 

website) about the equipment they were using (e.g., were their earphones wireless or wired). 

Afterwards, they read a consent form and accepted it before starting.  

Task 

 The study was split into three phases: an initial pairwise similarity rating task, followed 

by a learning task of 400 trials, and concluding with a second pairwise similarity rating task. 

Before beginning the first pairwise similarity task, subjects were asked to complete 6 practice 

trials that used stimuli that were neither Kalaphones (K) nor Lakaphones (L). This allowed the 

subjects to become accustomed to the web interface and get a sense of what to expect.  

Once practice trials were done, the website started the first phase, the similarity rating. 

This task had 40 trials where subjects would listen to two 12-bit/3-chunk sound strings played 

one after the other in rapid succession (with a small pause in between) and were asked to rate 

how similar they were, on a scale from 0-9, 9 meaning the sounds were completely identical, and 

0 being they are completely unalike. The 40 strings were split into four pairs of 10: 10 were K-K 

pairs, 10 were L-L pairs, and the remaining 20 were K-L/L-K pairs. The K-L comparisons were 

equally split between trials where the K played first, and the L played first to ensure that there 

was no bias caused by hearing one category first.  

After the first similarity rating was completed, there were 400 supervised category 

learning trials with corrective feedback. Subjects would hear a sound-sequence and could press a 

key to respond that it was a LAKAPHONE (L) or a KALAPHONE (K). Feedback was given, 
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indicating whether their response was correct or incorrect. Using a keyboard instead of a mouse 

click (or any other measure) helps standardize the learning method and has been used in previous 

studies (Pérez-Gay et al., 2017). The learning trials consisted of 200 K strings and 200 with L 

strings. The Ks and Ls were randomly distributed across the 400 trials, and each subject got a 

different variation of the randomization (i.e., subject 1’s randomly distributed K or Ls was not 

the same as subject 2’s distribution, and so on). The 400 learning trials were broken up into 4 

blocks of 100 trials each. After each block, subjects were given the opportunity to take an 

optional 5-minute break before starting the next block.  

After subjects finished the category learning trials, they completed the second pairwise 

similarity judgment task. The 40 pairs were identical, but their order was shuffled with a 

different randomization.  

Data collection 

Data was collected throughout the study in real-time and compiled in an excel file once 

the subject had completed the task. Real-time data collection was made possible with a 

TensorFlow library generated by a JavaScript. If subjects did not complete the study for 

whatever reason, their data would be classified in a folder called “incomplete” and were not used 

in our analysis.   

Generation of stimuli 

 Our sound-sequences were built using voiced “dee” and “dah” bits and were played at a 

speed of 70ms each. One sound-sequence consisted of a string of 12 “dee”’s and “dah”’s playing 

one after the other. The time separating between each bit was 25ms, for a total length of 1140ms. 

The stimuli were separable into categories based on the presence/absence of a “dee-dee-dah-dah” 
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(Kalaphone) or “dah-dah-dee-dee” (Lakaphone) playing at any location in our sound-sequence 

(e.g., XXXX-dah-dah-dee-dee -XXXX, and dee-dee-dah-dah -XXXXXXXX are both Ks; the 

same would be true for an L). Having our sound-sequence 12-bits long was not an arbitrary 

decision as having 12 bits allowed us to generate 240 Ks and Ls, respectively; 200 for the 

categorization task and 40 for similarity judgments.  

Before launching our pilot study, the stimuli were tested extensively between the team 

and a couple of volunteers in order to determine whether the categories were learnable. Our 

initial subjects reported that the stimuli were too confusing, and as a result, we had to change the 

structure of our stimuli to make them easier. The most common response was that the string 

sounded too holistic, and it was virtually impossible to discern which stimuli was a K or L. 

Consequently, we were forced to split our 12-bit strings into 3, 4-bit chunks. The inspiration for 

this came from Miller’s (1956) observation that subjects could retain a longer bit-string if the bits 

were combined into larger groups (“chunks”) in their working memory instead of trying to 

memorize them as a single string (e.g., it’s easier to remember 456798235 as 456-798-235 as the 

grouping (chunks) simplifies the demands on short-term memory). Chunking is not exclusive to 

numbers and language and has been observed in music (Godøy et al., 2010), as well as in the 

study of acoustics and rhythm (Teng et al., 2018).  

These new stimuli were largely similar to the old ones, with a few minor changes that had 

to be addressed and tested rigorously. The similarities between our “chunked” strings and “non-

chunked” ones are that the length of the individual bits stayed the same (70ms), and we could 

still keep our Ks and Ls mutually exclusive. (This will be expanded upon shortly.) The most 

obvious change is that our stimuli are now composed of three chunks of 4-bits (which looks like 

XXXX-XXXX-XXXX), compared to our non-chunked stimuli. This change in structure added 
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two extra challenges with how we would calibrate our stimuli: (1) how many ms should separate 

each bit played within 1 chunk (i.e., how fast should the “dee/dah”’s come after each other; let us 

call this the “within-chunk” rate) and (2) how long would the delay be between each chunk (i.e., 

the “between-chunk” rate). After months of testing, it was decided that the within-chunk rate 

would be 25ms and that the appropriate between-chunk rate would be 300ms. This made our 

sound-sequences a lot longer, as we went from our original 12-bit sequence lasting a total of 

1140ms to 2040ms with the chunked stimuli. As with our old stimuli, only one of the three 

chunks was the relevant feature (e.g., XXXX-dee-dee-dah-dah-XXXX is a K), and it was 

positioned randomly and equally across all three chunks to avoid a position bias.  

Measures  

Learners 

 As a criterion for successful learning, we used at least 80% correct responses in the last 

100 trials, as previously used by Pérez-Gay et al. (2017). With this, our subjects could be 

classified as “Learners” and “Non-Learners”.  

Results 

Learning 

 Thirty-five subjects successfully completed the category-learning and similarity rating 

tasks. Only four met our 80% “learner” criterion; the rest were “non-learners”. The last block 

performance of our learners varies from 86% to 98% correct. It is likely that with an extra 200 

trials, we may have had more learners; as 3 subjects had 70-75% correct trials in the last block, 

with another 4 more scoring between 65 and 69% correct. Moreover, it is important to note that 

all four of the learners are currently in Dr. Harnad’s lab, and nine members from the lab 
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participated in our study (Figure 1). It is possible that only the lab-members met the 80% 

criterion due to their familiarity with the subject. Removing the nine lab members left an N of 

26, but there were still several that were above chance, so we went to test whether learning 

performance was correlated with CP. But first, we will describe the measure of CP. 

 
Figure 1. Mean number of correct trials in the last block for the whole sample (N = 35; blue bar) 

and for the non-lab member sample (N = 26; red bar). The average correct trials on the last block 

for the whole sample (blue bar) is M = 61.73, SE = .023, and for the non-lab member sample 

(red bar) is M = 58.1, SE = .019.  

Similarity Judgments 

 To test for CP (between-category separation and within-category compression), we 

calculated the average similarity ratings. These were calculated for both between-category (B) 

and within-category (W) pairs, before (pre) and after (post) learning. This created four variables: 
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“Bpre”, “Bpost”, “Wpre”, and “Wpost”. Further calculations were done to measure the change in 

similarity judgments for both the between-category (diffB = Bpost – Bpre), and within-category 

(diffW = Wpost – Wpre) pairs. A between-category separation would be indicated by a positive 

“diffB” value, as the members of different categories are perceived as more different after 

category learning. Within-category compression would result in a negative “diffW” value, as the 

members of the same category are perceived as more similar after category learning. To combine 

separation and compression into a single CP score, we used “Global CP” (GCP): GCP = diffB - 

diffW. If diffB is positive, and diffW is negative, GCP increases. If diffB is negative (i.e., 

between-category compression instead of separation) or diffW is positive (i.e., between-category 

compression instead of compression), GCP decreases.  

 Many correlational analyses were done to test whether learning produces CP. The first 

was the correlation between the number of correct trials in block 4 and GCP. The correlation was 

positive and significant, r = .599, N = 35, p = .001. The greater the learning, the greater the GCP. 
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Figure 2. Correlation between percent correct in block 4 and GCP for all 35 subjects (r = .599, N 

= 35, p = .001).  

Because all the learners (N = 4) (80% correct or higher) came from Dr. Harnad’s lab, we 

removed all 9 lab-members to see whether there was still a positive correlation between percent 

correct and GCP.  The correlation was still positive but not significant, r = .398, N = 26, p = 

.062. 

  

Figure 3. Correlation between percent correct in block 4 and GCP for the 9 non-members of the 

lab (r = .398, N = 26, p = 0.62 NS).  

 Of the four learners who attained 80% correct in isolation, one did not show a CP effect. 

This subject’s final B/W scores show almost no difference in similarity ratings before and after 

learning (Figure 4 & 5). 
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Figure 4. Similarity ratings between (blue bar) and within (red bar) categories before the 400 

training trials for the four Ss who eventually reached 80% correct by the end of the training 

trials. Similarity was about the same for between and within categories. Average similarity 

judgment scores for between (blue bar) were M = 5.5, SE = .10, and for within (red bar) was M = 

5, SE = .37. 
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Figure 5.  Similarity ratings between (blue bar) and within (red bar) categories after the 400 

training trials for the four Ss who eventually reached 80% correct by the end of the training 

trials. Three of the subjects show CP, one (28_eng) does not. Average similarity judgment scores 

for between (blue bar) were M = 6.5, SE = .39, and for within (red bar) was M = 3.7, SE = .78. 

Supplemental Analyses 

Position Bias 

 After completing our analysis of categorization performance and its relation to CP 

effects, we analyzed whether our stimuli or the subjects’ performance showed any chunk biases. 

We checked for (1) position bias in the stimuli by calculating whether there was any inequality in 

the distribution of stimuli in which the distinguishing feature appeared in chunk C1, C2 and C3, 

(it should be 1/3 for each chunk). We also checked for (2) category bias by calculating whether 

there was any inequality in the distribution of K stimuli and L stimuli for C1, C2 and C3 (it 

should be 1/2 for each chunk). (1) and (2) would be stimulus biases. We also checked for (3) 

performance bias by calculating whether there was any inequality in the distribution of the 

proportion of correct responses for all the stimuli when the distinguishing feature was in chunk 1, 

2 or 3 (it should be 1/3 for each chunk). (We also checked (3) separately for K stimuli and L 

stimuli biases). The Chi-Square test was used to test departures from predicted proportions.  

 For the two potential stimulus biases ((1) position bias and (2) category bias), no Chi-

Squares were statistically significant, hence our Ks and Ls were equally distributed in C1/2/3 for 

all 400 trials, and in each block.  
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There were two instances of subject bias. The first was that for the whole sample (N = 

35), subjects performed significantly better on C1 compared to C2, X2 (504, N = 35) = 566.25, p 

= .028 (Figure 6).  

  

 

 

 

 

 

 

 

Figure 6. Performance scores for the whole sample (N = 35) for Chunk 1 (blue bar) & 2 (red bar) 

across 400 trials. The mean number of correct trials for Chunk 1 was M = 78.80, SE = 2.95, and 

for Chunk 2 was M = 66.97, SE = 1.76. 

The second performance bias we found was when we evaluated the sample without lab-

members (N = 26), our subjects performed better when K’s distinguishing feature was on C2 

(C2K), than when L’s distinguishing feature was on C2 (C2L), X2 (144, N = 26) = 185.727, p = 

.011 (Figure 7).  
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Figure 7. Performance scores for the non-lab members sample (N = 26) for Chunk 2K (red bar) 

and Chunk 2L (blue bar) across 400 trials. The mean number of correct trials for Chunk 2K is M 

= 33.35, SE = .93. and for Chunk 2L is M = 31.73, SE = 1.08. 

Discussion 

Learnability of our stimuli 

  This pilot study indicated that the sound-sequence categories we generated are learnable 

and that learning them produces CP. Only four subjects (11%) could reach our success criterion 

of 80% correct in the last learning block (and only 3/4 showed CP), but the correlation between 

the percent correct and (global) CP across all 35 subjects was positive and significant (and there 

still remained a near-significant positive correlation when we excluded the 9 lab members 

(including the four 80%-learners) from the sample). This suggests that with a larger sample size, 

a significant effect would be likely. A potential explanation for CP is that the subjects (or their 
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brains) produce “dimensionality reduction” as they learn the categories: they learn to pay 

selective attention to only the category distinguishing feature and ignore the rest (Dupont et al., 

2013; Pérez-Gay et al., 2017).  

 There are many potential explanations as to why only a few select subjects are attaining 

our 80% success criterion. Our categories may be a little too difficult to learn in 400 trials. After 

subjects have completed the study, many of them reported back to us that the stimuli were too 

difficult and confusing and that it was almost impossible to differentiate a K from an L. While 

self-report can be unreliable at times (Althubaiti, 2016), it is nonetheless important to take the 

feedback we get from our volunteers seriously; the statistics do indeed reflect their difficulty in 

learning. Previous studies evaluating category-learning and difficulty have emphasized that if 

there are more trials added to difficult categories, learning is more likely to occur (Pérez-Gay et 

al., 2017; Véronneau et al., 2020). While it is possible that there might be a “lab-member bias” in 

our sample, it is doubtful that this bias is a major reason why non-lab subjects didn’t reach the 

criterion. It is important to keep in mind that all subjects completed our study in their homes, 

using their own equipment. This means that we have no control over what goes on in their 

personal living spaces (distractions could arise unexpectedly, and this can add noise to our data 

and hinder our subjects’ ability to learn). We also do not have any control as to what equipment 

subjects use to participate (some subjects could have partially defective earphones, an unstable 

internet connection, etc.). All these factors would normally be controlled and minimize variance 

in a laboratory setting.   

Potential stimulus and response biases 

 Two potential stimulus biases are position bias in how often the category-distinguishing 

feature appears in chunk 1, 2, or 3 across all 400 trials (should be 1/3 each) and category bias in 
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how often chunk 1, 2, or 3 was part of a K or an L overall and per block (should be 1/2 each). 

We also tested for a performance bias in the number of correct trials depending on whether the 

category-distinguishing chunk appeared in chunk 1, 2, or 3. We found no evidence for either 

position or category bias, therefore any performance bias when the distinguishing feature was in 

chunk 1, 2, or 3 would be perceptual rather than a consequence of unbalanced stimuli.   

We did find two statistically significant instances of performance bias in our sample’s 

performance. The first was that our subjects (N = 35) had a significantly higher percentage 

correct when the distinguishing feature (whether for Ks or Ls) was in chunk 1 compared to 

chunk 2. Subjects were more likely to categorize a K or L correctly if the distinguishing feature 

was at the beginning, rather than the middle of our sound-sequence. Many of our subjects did 

report that the stimuli sounded holistic and that the middle chunk was the hardest to decipher 

because subjects were focused on how the first chunk sounded and could not adequately focus on 

the second chunk. With that taken into consideration, this could be a classic case of the 

anchoring bias (the first piece of information presented to you is more salient than the 

information that comes afterwards; Tversky & Kahneman, 1974). The second performance bias 

was only in the non-lab member’s sample (N = 26). In this case, subjects scored more correct 

trials when the distinguishing feature for K was in Chunk 2 (C2K) compared to when the 

distinguishing feature for L was in Chunk 2 (C2L). The cause is less evident, and perhaps despite 

the significant Chi-Square, this was not a robust effect, particularly as the overall performance 

was closer to chance in the non-lab sample.  

Analyzing for any bias (whether stimulus or response) in this pilot study may help in 

designing more balanced stimuli for the full-scale follow-up experiment. The bias analyses could 

also be done separately for each of the four 100-trial learning blocks. 
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Preliminary conclusion 

 Bringing all this together, our findings demonstrate a classic CP effect for serial auditory 

pattern categories that have now been replicated many times for visual categories (Pérez-Gay et 

al., 2017; Andrews et al., 2015). Our pilot results demonstrate that there is a positive correlation 

between how well a category is learned and the size of the perceptual change called CP. The 

present study contributes to the existing literature on auditory categorical perception, while 

simultaneously expanding on which type of sounds can be used to induce category learning and 

CP.  

Limitations 

 Our pilot study had several limitations. First, if we remove the 9 lab members that 

participated in our study (who were not naïve to what a categorization/categorical perception 

study entails), we lose statistical significance (and all four of our 80% learners). A plausible 

reason for this is that the lab members, with their previous experience/knowledge of what we are 

studying (categorization and CP), were better “prepared” for what the study entails, hence less 

likely to be deterred by the difficulty of the learning task. (Their knowledge would not, however, 

clue them in any way to what the category-distinguishing feature was). Second, the 

inclusion/exclusion criteria of our study were respected for the most part, but we still had 

subjects that would normally have been excluded if this had been a paid study (i.e., any with 

musical experience, or above the age of 55). Third, our experiment was not done in a laboratory 

setting (due to the COVID-19 pandemic). This means that the equipment people used was highly 

variable, introducing an unknown amount of noise and variance into our results. Last, it is 

possible that our stimuli were simply too hard to learn for the majority of our sample. Many of 
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them reported that they had no idea what the category differences were and that they were 

guessing for most of it.  

 The follow-up to this pilot study will have to take these variables into account to reduce 

these problems, including conducting it in the laboratory rather than just online.  

Conclusion  

 This pilot study investigated the effect of category learning on the perception of auditory 

stimuli. The categories did turn out to be learnable, and the learning did generate a global CP 

effect, but there was not enough successful learning among the non-lab-member subjects. Further 

analyses on our sample’s level of CP were conducted to test whether there was any bias in our 

stimuli or our subjects’ performance. Because all four of our learners were members of Dr. 

Harnad’s lab, we re-analyzed our sample after removing all nine lab members from our sample 

of 35 to see whether there was still an effect in the remaining 26. The positive correlation 

between learning and perception was there, but it no longer reached statistical significance. More 

measures to evaluate bias had to be considered to ensure that our Kalaphones (K) and 

Lakaphones (L) were equally and randomly distributed for each subject. Two instances were 

found where performance was skewed towards one chunk over the other. The first was where our 

entire sample scored more correct trials in chunk 1 over chunk 2, and the other one was when the 

non-lab member sample scored more correct trials in chunk 2K over chunk 2L.  

 These results indicate that our stimuli are learnable, but that subsequent studies may have 

to adjust the difficulty to make the learning less difficult. Either by calibrating presentation speed 

between or within-chunk speeds, or by adding another 200 trials to allow our subjects to further 



AUDITORY CATEGORICAL PERCEPTION  

 

26 

 

familiarize themselves with our stimuli. There will also be vocal imitation of the stimuli in later 

experiments, and this too will slow down presentation rate. 
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